
FEDEIW. CQIMINIrA~ corr III'ON
lJfUOFlME'"

r

'I' -f!5
~RECEIVED

DEC 23 1997
DOCKET FILE COPY ORIGINAL

United States Government Memorandum

Magalie Roman Salas
William W. Sharkey
D. Mark. Kennet
Additional Information Pertaining to the December 11, 1997 Release of the Hybrid Cost Proxy Model
December 23, 1997

Subject:
Date:

To:
From:

t. How HCPM addresses the ten criteria discussed in paragraph 250, FCC 97-157

1. The technology assumed in the model must be the least-cost, most-efficient, and reasonable technologyfor
providing the supported services that is currently being deployed....

HCPM chooses from among off-the-sbelftechnologies available today and minimizes the total investment in outside
plant assuming that the switch locations are fixed at today's locations. The set offeasible technologies do not incorporate
loading coils and do not impede the provision ofadvanced services; our engineering consultant has certified that the
technologies modelled~ provide service at the 4 mhz level. Ifappropriate input data are used, the model will report
line counts equal to actual ll.BC wire center line counts. The model will report average loop lengths consistent with the
distance approximation metric assumed. and offers a user-adjustable factor that can be set to appropriately calibrate
looplengths.

2. Any nelWorkfunction or element, such as loop, switching, tra1'lSport, or signaling, necessary to produce services
must have an associated cost.

HCPM, as a hybrid module, reports costs for all network components that it models as part ofoutside plant

3. Only long-nmforward-Iooldng economic cost may be inclu~d ...

HCPM models only those components ofthe network that are associated with providing residential and business service
using the least-cost equipment available today. As such. it is a long-run model in that it asswnes that the network being
modelled would be built today to meet the user-determined demand. All costs used have been based on vendor prices
communicated to us in public channels or from data placed in the public record.

4. The rate ofreturn must be either the authorizedfederal rate ofreturn on interstate services....

The HCPM outside plant module will interface with a capital cost and expense module using any user-defined rate of
return.

5. Economic lives andfuture net salvage percentages used in calculating depreciation expense must be within the
FCC-authorized range....

The user may determine the appropriate economic life and salvage percentage in the chosen capital cost and expense
module.

6. The cost study or model must estimate the cost ofproviding service for all businesses and households within a
geographic region....

HCPM models service to all businesses and households that are passed as input to the modules.

7. A reasonable allocation ofjoint and common costs must be assigned to the cost ofsupportedservices....

HCPM permits any allocation ofjoint and common costs desired by the user. In particular, the relevant joint and
common cost that may be at issue is the cost of feeder plant in the event that support is to be provided at the Census

block or density zone level. HCPM pennits either a line-weighted proportional allocation offeeder plant for the density
zone approach or, more consistently with economic theories ofsubsidies, a Shapley value approach for allocation at the
Census block level.

8. The cost study or model and all underlying data, formulae, computations, and software associated with the model
must be available to all interestedparties for review and comment. ...

All data used in HCPM are either in the public record or available from commercial vendors "off the shelf." All
formulas, computations, and software have been placed on the public record.

9. The cost study or model must include the capability to examine and modify the critical assumptions and
engineering principles....

All assumptions are accessible as user inputs. In particular, the cost of capital and depreciation rates are open to the
user in the capital cost and expense modules chosen. Fill factors, input costs, overhead adjustments, retail costs,
structure sharing percentages, and terrain factors are all easily editable data. Engineering crossover points are also user
editable, with the understanding that the model does NOT automatically switch, say, from copper to tiber at the
crossover point but may determine that the switch occur at a lower value based on economic criteria (it will never switch
at a higher value).

10. The cost study or model must deaverage support calculations to the wire center serving area level at leas!. ...

HCPM permits support calculations be deaveraged to the wire center, and, under appropriate assumptions for allocating
feeder cost, to the grid level or density zone level. With effort, the Shapley approach permits deaveraging support
calculations to the Census block level or even the level ofan individual geocoded customer (if input data are individual
geocoded customers).

n. Use of geococled cuatomer locations with HCPM

The Hybrid Cost Proxy Model has been designed with the anticipation that geocoded customer locations will
eventually be available for use with it Currently the model accepts inputs in the form ofdata tiles containing a line of
ascii text representing each census block whose interior point is contained in the wire center boundaries. For each
census block, the model reads the geocoded location of the interior point, the households and business lines contained in
the block and certain other geological information relevant to the block. As written. the model will readily accept as
inputs geocoded customer location data for individual households and business without any modification, as long as the
data are formatted in conformance with the model input requirements. In order for the data to be preprocessed to match
HCPM's input requirements, the following steps would need to be taken.

1. Using Maplnf~ (or other GIS software product), associate each customer location with appropriate
geologicallterrain data. The proponents of the BCPM model have made such data available at the Census Block Group
(CBO) level. Thus, the process would likely take the form ofdetermining in which CBO each customer resides using
Maplnfo and CBO boundary data (available at cost from the Census Bureau), and then associating the BCPM
terrain/geologic data with that customer.

2. Write the customer location information to an ASCII file, with each line corresponding to one customer location. The
format of these data would be that required by HCPM.

The appropriate HCPM module (CENBLOCK) would be able to process this tile exactly as it currently
processes tiles with the Census block constituting each record. Processing time is likely to be somewhat longer than
with Census blocks, since the machine would have to read through more records, but the operation would otherwise be
lUlchanged. The user would have to set the MicroGridSize parameter to a number such that no more than 2500
microgrids -- or 50 rows of SO columns -- would be created within a grid block. For example, if 18 kfwere the grid
size, then the MicroGridSize parameter would need to be set to at least 0.36 (0.36 x SO =18). Thus, the resolution of
the CENBLOCK output would be 360 feet, less than the average city block (about 500 feet).

ill. How the HCPM modelling team has adjusted tine counts

When a reliable source of household and business line counts becomes available at the wire center level, it will
be a straightforward matter to true-up the publicly available household and business line count information to reflect the
best available data for each wire center. Until such a data source is available, the model must make use ofmore
aggregated public information to determine line counts. For our default inputs for each wire center, we have adjusted the
data on households from the Census Bureau to match the household totals put in the public record by the BCPM
proponents. Additionally, we have allocated the business line counts available from the public record, again from the
BCPM proponents, to the Census blocks we use as inputs. The process for these two adjustments is as follows.

The data from the Census Bureau on households at the Census block (CB) level is accurate as of 1990. BCPM
has reported 1995 updated estimates for household counts at the Census Block Group (CBO) level. We have adjusted
our CB-Ievel household counts as follows:

HCPM CB households = (Census CB householdslCensus CBO households) x
(BCPM CBO households)

..
where CB refers to an individual Census block; and CBO refers to the Census block group ofwhich the Census block is
a member.

Intuitively, this formula is saying that the proportion of CBO households within a given CB has remained
constant, but that growth, emigration. etc., have caused the CBO population to change from the Census year (1990) to
the time ofBCPM's update (1995). Thus, our new household counts retlect the changes that BCPM records at the CBO
level.

A similar heuristic process is used to allocate the BCPM business line counts from the CBO level to the CB
level. The fOIDlula is as follows:

HCPM CB Business Jines = (Census CB householdslCensus CBO households) x
(BCPM CBG Business lines)

Intuitively, this formula says that BCPM's CBO business lines occur in the component CBs in direct proportion to the
household population share.

It should be noted that these values are default values only; the HCPM modelling team does not take a position
as to whether the BCPM line counts should be deemed accurate. Users remain free to adjust these values if their
research suggests that other values are appropriate. We do feel that there is an advantage to defaulting to one
proponent's line counts, though, in order to facilitate direct comparisons between model platforms/algorithms.

The HCPM estimates the number of residential lines by applying a user defined multiplier to the number of
households (as computed above) in order to determine the total number of residential lines. The appropriate value of the
multiplier can be determined from publicly available data for any state by taking the ratio ofresidential access lines from
1995 ARMIS data (reported in Table 2.5) to the number ofhouseholds determined from Census data. In computing
universal service support levels for single line business, data from the same AlUv11S table can be used to estimate the
ratio ofsingle line business lines to total business lines.

IV. Total Monthly Cost Calculation in the HCPM

A direct calculation of total monthly cost would involve the following components: (i) the capital costs
associated with the loop plant investment and monthly expenses associated with this investment; (ii) the capital cost of
switching and its associated expense; (iii) an allocation of the capital cost of signaling and transmission and their
associated expenses to the wire center. Total monthly cost is the swn of these components. For the purpose of
estimating universal service support levels based on a hybrid cost proxy model that uses the HCPM 2.0 customer
location and loop design modules, combined with switching, signalling and transport, and expense modules from other

models, we have adopted the following indirect approach. Using BCM2 data, total monthly cost can be associated with
comesponding data at the wire center level on loop investment and total lines. Using standard econometric techniques
we fit a trans-log ftmctionsal fonn relationship to this data in order to derive a "reduced fonn" expense model estimator.
We then applied this function to wire center data on loop investment and line counts as determined by the HCPM in
order to estimate the monthly cost and corresponding universal service support levels that would have been generated by
a hybrid model having these components. This prediction therefore reflects the same cost ofcapital, depreciation rate
(asset lives), and operating expenses that would be observed in a direct calculation. Since our estimation procedure
results in statistically significant estimates ofparameters of a cost per line ftmction and represents a good fit to the
underlying BCM data (with an R2 = .998), we may reliably use the indirect calculation in order to predict aggregate
support levels under the hybrid model approach.

A more detailed description ofour estimation procedure is given as follows. In our preliminary capital
cost/expense module of the HCPM, the monthly cost per line for a wire center is estimated as a ftmction of loop plant
investment per line and lines. These variables are available by wire center and a function predicts the total monthly cost
per line, including switching,transmission,and other cost that are relevant to the provision of universal service for the
wire center.

For any wire ~ter, our total monthly cost per line is derived by estimating

In(Cost) = R + R In(Inv) + R In(l.) + R (In(;nv) l + R (lll(t) l + R In(Inv) In(L)
L 1-'0 1-'1 L 1-', 1-'5 L 1-'4 1-'$ L

where Cost is total monthly cost and L is lines. The variable

Inv . I' line
- IS cop mvestment per .
L

We estimate this function using data from the BCM2 model. We took a random sample ofstates, aggregated
the data by wire center, and, then. pooled the data ovec the states ofthe sample. The state are Alabama, Wisconsin, MA.
RI, and CO. Our estimation is based on 1582 observations (wire centers) across five states.

We first estimated our function under OLS assumptions and, then tested for heteroscedasticty. Using the
Breusch Pagan test, we found heteroscedasticity. We implemented GLS estimation and corrected for heteroscedasticity
by deflating all varibles by the square route ofthe natural log oflines.

We then estimate total cost per line as

where investment and line numbers are take from the HCPM.

Thus, our estimation oftotal monthly costs captures costs associated with loop plant, transmission, switching,
output volwnes, and all relevant costs associated with universal service. The cost ofcapital. asset lives, and forward
looking operating expense will reflect BCM2 assumptions. In summary, we consider our total monthly cost calculations
to be a reasonable upper bound given available data. Moreover, our total monthly cost calculation is a preliminary
method for integrating HCPM with other modules from either the Hatfield model or the BCPM.

Release Notes for HCPM 2.0
December 11, 1997

This release includes the following software and supporting materials:

* Cenblock 2.0: the customer location module for HCPM 2.0

* Feeddist 2.0: the loop design module for HCPM 2.0

* Two sets of parameter inputs under which Feeddist can be run

*Model documentation and user guides

* Data inputs for 49 states and the District ofColumbia. Cenblock has been run using four
different parameter sets corresponding to default grid sizes of 12, 18,24 and 30 kilofeet. These
outputs are provided in compressed files designated by a state code and a number code
corresponding to the grid size.

*Model outputs for each of the above scenarios and for a cost-minimizing run in which costs are
minimized with respect to grid size. Output files are designated by a state code, a number code
representing the grid size and a letter code designating the parameter input set under which feeddist
was run.

* Batch files which allow Feeddist to be run for the entire United States under a single command.
This procedure takes approximately 24 hours to complete using a Pentium II processor and the
Windows NT operating system.

* Complete source code for all modules

In response to the Federal Communication Commission's Public Notice, released November 13,
1997, output data for five states -- Florida, Georgia, Maryland, Missouri, and Montana -- and the
executable files for HCPM 2.0 was provided to the Commission on December 11, 1997. In further
compliance with the Public Notice we address the following issues.

1. Ability of the model to accept geocoded data.

HCPM 2.0 will accept any data that conform to the input specifications in the CENBLOCK
manual, including individually geocoded customers. In the event that such data were to be made
available for use with CENBLOCK, the user would merely run CENBLOCK with the microgrid
size parameter set equal to a number no smaller than *1/50) of the chosen grid size.

2. Ability of the model to accept wire center boundary data in standard GIS format.

Wire center boundary data are preprocessed by a standard commercial GIS software package. In
our preliminary runs, we have used MapInfo software with ExchangeInfo Plus boundary data; other

packages can be substituted if they are deemed to contain more accurate data. The GIS software
and boundary data are used only to assign customer locations to a wire center; their source - as long
as it is accurate and the preprocessing results in datasets that conform to the CENBLOCK input
specifications - is not relevant to HCPM 2.0

3. Documentation of assumptions and model optimization algorithms.

The HCPM, version 2.0, optimizes the design ofloop plant in the following respects.

* The model optimizes the trade-off between distribution plant, feeder plant and loop electronics in
several ways. As explained in the model documentation, the model accepts as candidate serving
areas a set ofgrids and sets of from 1 to 4 serving area interface terminals for each grid. For each
such configuration, distribution plant is designed by attaching customers to their closest SAl
terminal. Then the model determines the cost minimizing number of SAls in each grid after taking
proper account of the cost ofterminals and the cost of interconnecting SAls when two or more are
present. Finally, the model can be run using various starting values for serving area grid size - the
current outputs include grid sizes of 12, 18,24 and 30 kilofeet. By taking the minimum cost for
each wire center over each of these possibilities, the model compares the increased cost of
distribution in larger grids to the reduced cost of electronics and feeder plant that typically occur
using larger grids. Each step in this optimization procedure takes full account of appropriate
engineering constraints governing maximum copper distance and the copper-Tl and Tl-fiber
crossover points.

* The model allows for the use of both 26- and 24-gauge copper in the distribution plant. When the
user specified 26-gauge distance threshold is exceeded for any customer in the serving area, a cost
multiplier is applied to account for the additional cost of24-gauge copper. Whenever the
maximum copper distance is exceeded for any customer in a serving area, a further penalty
multiplier is applied to account for the cost of thicker copper or TI electronics that could be used to
reach distant customers. By setting this penalty sufficiently high, the user can effectively impose
the maximum copper distance as a distance ceiling for every customer served.

*For each grid location, and each feasible technology (analog, TI, or fiber) the model optimizes
the number ofTI terminals and/or fiber terminals at each serving area interface. Based on the
results of this optimization, the model then selects the technology giving minimum cost for that
location. In addition, the model optimizes over technology type during the construction of the
feeder and sub-feeder system, since the distance of each SAl from the central office is a function of
the feeder system under consideration.

* The model optimizes both the number and location of sub-feeder routes using an algorithm
described in the model documentation. In both the distribution and feeder sections of the model,
rectilinear (L I) distances are used in all computations rather than airline (L2) distances.

4. Flexibility of the loop design algorithms to allow alternative definitions of supported services in
light of future "changes in technology, network capacity, consumer demand, and service
deployment. "

As described above, the model seeks to find a cost minimizing network design based on a
large number of technological options and user specified parameters that reflect grid size and
technology crossover points. Through suitable choices of the available user inputs, the model can
reflect a network design that is consistent with virtually any quality of service standard.

5. Ability of the model to incorporate wireless cost thresholds at the level of the wire center or
smaller geographic unit.

The model currently reports all outputs at the wire center level. Through a simple user
computation using these outputs, any desired wireless threshold could be immediately incorporated
into the model outputs. If cost estimates based on a smaller geographic unit are desired at a future
time, these could be provided through minor programming revisions.

6. Fiber-copper crossover point.

As noted above, the model outputs will provide all requested information for five states
based on grid size and parameter inputs that define the appropriate crossover points. For the 12
kilofoot output reports, both the maximum copper distance and the copper-Tl crossover point are
equal to 12 kf; the Tl-fiber crossover is equal to 18 kf and the penalty for exceeding the maximum
copper distance is equal to 1.5 (reflecting a 50% cost increment). For each of the 18, 24 and 30
kilofoot output reports, the maximum copper distance and the copper-Tl crossover point are equal
to 18 kf; the TI-fiber crossover is set at 24 kf; the 24 gauge multiplier is equal to 1.1736 and the
copper distance penalty is equal to 1.25.

7. Proprietary or confidential information.

The HCPM makes no use of proprietary or confidential information. As described in the
model documentation, inputs include data from the Bureau of the Census; geological and business
line count data from previous publicly available versions of the BCPM; and wire center boundary
data from ExchangeInfo Plus, a product of On Target Mapping, Inc. Users who wish to obtain the
raw data inputs must either purchase the wire center boundary data from On Target Mapping, or
negotiate with On Target Mapping the terms under which the HCPM input data will be used. No
payments or negotiations are required in order to make use of all model data supplied with this
release.

Exchangelnfo Plus
Database

Census Block
Database

BASE.CSV
(data on business
lines, soil/terrain,
etc.)

CENBLOCK
program

Binary data file
containing popu
lation dispersion
within gridblocks

Component cost
data

Engineering
parameters

Microgrid output
from CENBLOCK

Feeder/Distribution cost
module: optimize subfeeder

. location and OSP tech
nology

Distribution plant
cost, by gridblock,
suitable for input
to BCPM expense,
switching modules,

CENBLOCK CUSTOMER LOCATION MODULE
EQUATIONSIPSEUDOCODE

This subroutine adjusts all input mesh areas (Census blocks) over the user-specified
maximum area. If the MA is smaller than the critical value. it leaves it alone. If it is
larger. it performs the following operation:

Number of grids := round(area ofMA/Critical Area + 0.5); {approximate number of}
{ slices ofMA}

Number ofrows := round(sqrt(number of grids) + 0.5);
Number of columns := number of rows;

Number of grids := (number of rows)*(number of columns);

side := sqrt(area ofMA*5.28*5.28/2590); {This is the side ofa square}
{ equal to area ofMA }

lower left x-coordinate := x-coordinate ofMA - O.S*side; {These are the lower}
lower left y-coordinate := y-coordinate of MA - O.S*side; (left coordinates of)

{the square}

area ofMA:= area ofMA/number of grids; { Each artificial MA will have this}
{area. }

if residential population of MA>O.O then
begin

residential population := residential population /nwnber of grids;
if round(residential population)=O then residential population := 1.0;

end;

if business population ofMA>O.O then
begin

business population := business population/number of grids;
ifround(business population)=O then business population := 1.0;

end;

{ Now calculate internal points for each artificial MA created. Lower)eft[J] is the x-}
{coordinate of the lower left corner ofthe wire center data; lower_left{2] is the y-}
{coordinate. Ref)atitude is the reference latitude used to calculate east-west}
{distances. }

for i := 0 to number of rows-l do
for j := 0 to number of columns-l do

begin
ylat := lower left y + i*side/number of rows + O.s*side/number ofrows;
ylat := ylat/(KFPerStatMi* StatMiPerMin* MinPerDegree) + lowerJeft[2];
xIong := lower left x + j*side/number ofrows + 0.5 *side/number of

columns;
xiong := xlong/(KFPerStatMi*StatMiPerMin*MinPerDegree*

cos(refJatitude*pil180.0)) + lowerJeft[l];
end;

Setup_grid

This procedure sets up the grid structure for the wire center territory.

{ Define length and width ofwire center territory }

North-South length := abs(lowerJeft(2] - upper_right[2])*
MinPerOegree·StatMiPerMin·KFPerStatMi;

East-West length:= abs(lowerJeft[I]-upperJight(l])*
MinPerDegree*StatMiPerMin*KFPerStatMi*cos(reClatitude*pil180.0);

{Calculate number of "tick marks" on each axis, which corresponds to the number of
grids in each direction. }

North-South ticks := round(North-South length/gridsize + 0.5);
East-West ticks := round(East-West iength/gridsize + 0.5);

{Calculate the number ofgrids. which equals the number ofNorth-South ticks times the
number ofEast-West ticks. }

Number of grids := North-South ticks*East-West ticks;

for j := 1 to Number of grids do
begin

column:= j mod (East-West ticks);
if (column = 0) then column := East-West ticks;

row:= j div (East-West ticks) + 1; if(j mod (East-West ticks) =0 then row:==
row-I;

{ The following are the lower left (x,y) and upper right (x,y) coordinates ofeach
grid}

glx := (column-I)* gridsize;
grx := column*gridsize;

gly;= (row-l)*gridsize;
gry := row*gridsize;

end;

This procedure takes each grid block and loops through the input dataset and determines
whether each mesh area record belongs in the grid block. If so, it adds it to the grid
block, keeping track of the total number of lines in the grid block.

for j := 1 to number of grid blocks do
for i := 1 to number of input records do
begin

read_data_record;
IF (x, y) of input record inside grid block j
THEN grid population := grid population + mesh population;

end;

Adjust_grid_areas

This procedure adjusts those grid areas that have a line population greater than the user
specified maximum.

For j := 1 to number of grid blocks do
begin

if ((grid line population) > maxgridpop)
and (number of mesh areas in this grid block>1)
then
begin

divisor := 2 ;
additional grid blocks := additional gridblocks + divisor*divisor - I;
height := abs(y distance of grid block)/divisor;
width := abs(x distance of grid block)/divisor;

for k := 1 to divisor do
for 1:= 1 to divisor do save_gridjnformation;

end
else save original grid information;

penalty_function

This function assigns a penalty to any proposed location of a serving area interface (SAl).
The program will try to minimize this penalty when it reports SAl locations to the
feeder/distribution cost module.

tcost := 0.0;
for i := 1 to number of rows do

for j := 1 to number of columns do
if (Lines[i,j]»O
then
begin

if (distance from microgrid to SAI[1] > gridsize)
then kmincost := 1.0e16
else kmincost := (distance from microgrid to SAI[I])*Lines[iJ]);

for k := 2 to n do
begin
if ((distance from microgrid to SAI[k]) > gridsize)
then kcost;= 1.0e16
else kcost ;= (distance from microgrid to SAI[k])*Lines[i,j]);
if kcost<kmincost then krnincost := kcost;

end;
teost := teost+k.mineost;

end;
dist_cost := tcost + distance from SAI[l] to switch;

end;

This procedure writes the grid information to a file. In addition, it reports the optimized
location of 1,2,3, and 4 SAIs. These locations are calculated by minimizing the penalty
cost function described above.

FEEDDIST FEEDER AND DISTRIBUTION MODULE

I. STRUCTURE MODULE (STRUCTUR.PAS)

This function serves as a lookup for structure costs. It takes density and terrain data as an
argument, and looks up percentage of underground, buried, and aerial cable; sharing
percentage; and total structure cost based on terrain factors.

if (depth_to_bedrock < critical_depth) and (hardness='HARD') then
{use hard rock values}

begin
tempI := pct_ugd*ugd_share*HardRockStruc[i)"'.FeedUgd +

pct_bur*bur_share·HardRoekStruc[i]I\.FeedBur +
pct_aer* aer_share· HardRockStrue[i]1\.FeedAer

NumberOfDuets := round(copperJines/feed_copper_cable_capacity + 0.5) +
round(fiberJines/fiber_cable_capacity + 0.5) + 1

temp2 := ManholeCost[i]I\.HardCostIManholeSpacing;
{ manhole cost per foot for underground}

end
else

if (depth_to_bedrock >= critical_depth) and (soil_textureJndicator=1) then
{use normal values}

begin
tempI := pct_ugd*ugd_share*NormalStruc[i)".FeedUgd +

pct_bur*bur_share*NormaIStruc[i]"'.FeedBur +
pct_aer*aer_share*NormaIStruc[i)"'.FeedAer

NumberOfDucts := round(copperJines/feed_copper_cable_capacity + 0.5) +
round(fiberJinesifiber_cable_capacity + 0.5) + 1

temp2 := ManholeCost[i)".NormalCostIManholeSpacing;
{ manhole cost per foot for underground}

end
else { use soft rock values}
begin

tempI := pct_ugd*ugd_share*SoftRockStruc[i)".FeedUgd +
pct_bur*bur_share*SoftRockStruc[iy.FeedBur +
pct_aer*aer_share*SoftRoekStruc[i)".FeedAer

NumberOfDucts := round(copperJines/feed_copper_cable_capacity + 0.5) +
round(fiberJines/fiber_cable_capacity + 0.5) + 1

temp2 := ManholeCost[i]".SoftCostIManholeSpacing~

{ manhole cost per foot for underground}

end~

tempI := tempI + pct_ugd*ugd_share*temp2;

if (MinSlope < MinSlopeTrigger) and (MaxSlope > MaxSlopeTrigger) then temp 1 :=
templ*CombSlopeFactor

else
if (MinSlope < MinSlopeTrigger) then tempI := templ*MinSlopeFactor
else
if (MaxSlope > MaxSlopeTrigger) then tempI := templ*MaxSlopeFactor~

structure_costjn := templ*1000.0~ {result in dollars per kilofoot}

II. DISTRIBUTION PLANT MODULE (DISTRIB.PAS)

This module calculates the investment in distribution plant. Within each microgrid. it
calculates the number of lots based on the number of customers and an assumption that
no lot has a length more than twice its width. The model provides plant to the microgrid.
and joins microgrids on distribution backbone that feed into the serving area interface
(SAL). The model tries up to four SAls, and chooses the number of SAls that minimizes
investment cost. In the case of multiple SAls, the model uses an algorithm invented by
Prim (Bell Research Journal, 1957) to approximately minimize the structure needed to
connect the secondary SAls to the primary SAL This algorithm is contained in the
PRIMDIST module. The module also uses a library heapsort routine as implemented in
Numerical Recipes by Press, Flannery, Teukolsky,and Vetterling (1986) with slight
modifications to handle vectors that have been dynamically allocated to extended
memory.

This procedure minimizes wasted lots within a square microgrid, subject
to the constraint that lots have lengths no more than twice their widths.
It returns the "optimal" number of lots in the NS and EW direction.

sqrt2 := sqrt(two)~

waste := number_ofJots~

minwaste ;= number_ofJots;
sqnl := sqrt(number_ofJots);
for i := round(sqnl/sqrt2) to round(sqnl) + 1 do

{Checkfrom square root ofnumber oflots/2 to square}
{ root ofnumber oflots. This guarantees that max }
{ length. width ratio is no more than 2. }

begin
EW_try:= i;
NS_try_d;= number_ofJotslEW_try ;
NS_try ;= round(NS_try_d);
waste := NS_try·EW_try· number_ofJots;
if (waste < 0) then waste := number_otlots;
if (waste <= minwaste) then
begin

minwaste ;= waste;
EW lots := round(EW try);- -
NSJots ;= round(NS_try);

end
end; {for EW try }

Calculate_Microgrid_Cost

This procedure calculates the cost of providing service to a microgrid whose lots have
been configured by the lot_divide procedure above. Starting at lower left of microgrid.
we walk north up every other lot line. accumulating lines and cable. If we accumulate
enough lines for a new cable, we add it, repeating the exercise until we reach either the
the northern boundary.

i := 1;
while i <= EW lots do

begin

j := 1;
while j <= NSJots do
begin

{ Take in lots on both sides. top and bottom, unless this is a microgrid}
{ border, in which case take in lots only on one side. If it is the }
{ corner. take in only one lot. }

if (i=EWJots) or (j=NSJots) then factor := 2.0 else factor := 4.0;
if (i=EWJots) and (j=NSJots) then factor := 1.0;

lines := lines + factor*lines-perJot;
cable_cost := dist_cable_cost(lines,density,gauge);
structure_cost := structure_costjn(

lines,O,density,GR.hardness,GR.DepthToBedrock.GR.SoilTexture,
GR.MinSlope,GR.MaxSlope,GR.WaterTb,O,I,O);

if(j <=NS_Iots-2) then
begin

microgrid_cost := microgrid_cost +
(2.0INSJots)*GR.MicroGridNS•DistRoadFactor* {frontage of2 lots}
(cable_cost + structure_cost);

line feet;= line feet + (2.0INS lots)·- - -
GR.MicroGridNS• lines*DistRoadFactor;

drop_terminal_cost := drop_terminal_cost +
drop_terminal_cost_fn(factor* lines-perJot, density);

end
else if (j = NSJots-l) then
begin

microgrid_cost := microgrid_cost +
(l.OINSJots)*GR.MicroGridNS·DistRoadFactor* {frontage of llot}
(cable_cost + structure_cost);

line_feet := linejeet + (l.OINSJots) •
GR.MicroGridNS*lines*DistRoadFactor;

drop_terminal_cost := drop_terminal_cost +
drop_terminal_cost_fn(factor* lines'-perJot, density);

end
else if (j =NS_lots) then

(at the border. we only have drop terminals; no cabling J
drop_terminal_cost := drop_terminal_cost +

drop_terminal_cost_fn(factor· lines-perJot, density);

j := j + 2;
end; { for j }

i := i+2;
end; { while i }

{ Now we need to calculate drops to customer locations. The following}
{formula talces a weighted average ofthe distance from the corner of }
{the lot to the center ofthe lot and halfthe road frontage ofthe Jot. 'The}
{weight, user-'ambda, is chosen by the user. Ifthe calculated drop }
{ length exceeds the user-determined maximum, it is set equal to that }
{maximum. }

dropJength := userJambda*O.S*
sqrt(

sqr((1.0tNSJots)*GR.MicroGridNS*DistRoadFactor) +
sqr((l.OIEWJots)*GR.MicroGridEW*DistRoadFactor)

)+
(1,0 - userJambda)*O.S*(l,OINSJots)*GRMicroGridNS*DistRoadFactor;

if drop_length> max_dropJength then dropJength:= max_dropJength;

drop_cost ;= totalJots*dropJength*costyer_drop_kf;
dropjeet := totaIJots*dropJength;

{ Finally, calculate cost ofnids for this microgrid}

CalculateJrid_distribution_cost

This procedure connects all microgrids to the appropriate SAl, given the number of SAls.
The routine that optimizes the SAl arrangement will call this procedure using 1 through 4
SAls and determine which arrangement minimizes cost. If there are more than one SAl,
this procedure determines a near-optimal interconnection arrangement using the Prim
algorithm.

The following section ofpseudo-code connects the southwest "quadrant" ofmicrogrids
to its respective SAl.

for j := 1 to divider_col do {from western border to column where SAl is located}
begin

if (flag"[ij]=n) and (lines"[ij]>O) then
{ ifmicrogrid below is populated}

begin
lots := round(GRhouseholds[i,j]*takerate) +

round(GR buslines[i,j]/linesyer_bus);
microgridJines ;= linesl\[i,j];
lot_divide;
calculate_microgrid_cost;

grid_distribution_cost := grid_distribution_cost +
microgrid_cost;

grid_drop_cost := grid_drop_cost + microgrid_drop_cost;
grid_terminal_cost := grid_terminal_cost +

microgrid_terminal_cost;
grid_nid_cost := grid_nid_cost + microgrid_nid_cost;
gridJinejeet := gridJine_feet + microgridJinejeet;
grid_drop_feet ;= grid_drop_feet + microgrid_drop_feet;

end;

rows_completed ;= i+ I;

if (flag"'[i+1,j]=n) and (lines"'[i+1,j]>O) then
{ ifmicrogrid above is populated}

begin

lots := round(GR.households[i+ l,j]*takerate) +
round(GR.buslines[i+1,j]/lines'-per_bus);

microgridJines := lines"'[i+1,j];
lot_divide;
calculate_microgrid_cost;
grid_distribution_cost ;= grid_distribution_cost +

microgrid_cost*penalty;
grid_drop_cost := grid_drop_cost + microgrid_drop_cost;

grid_terminal_cost ;= grid_terminal_cost +
microgrid_terminal_cost;

grid_nid_cost := grid_nid_cost + microgrid_nid_cost;
grid_linejeet := gridJine_feet + microgridJine_feet;
grid_drop_feet := grid_drop_feet + microgrid_drop_feet;

end;

(Bring forward lines from previous microgrids)

if (there are any new lines) then
bring them to first interconnection point;

else
No lines here, so cross microgrid ;

Capture lines from these microgrids;

Bring forward lines to next microgrids;

end; { for j }

The above is repeatedfor each quadrant, for each SAl. Now all secondary SAls must be
joined, which is handled by the Prim algorithm, discussed in the PRIMDIST module.

This procedure detennines the optimal configuration of primary and secondary SAls by
calculating the distribution cost of 1 through 4 SAls. In so doing, it recognizes the
tradeoff between the extra cost of T-I tenninals at the secondary SAls and the structure
cost associated with serving a possibly quite diffuse customer base.

mincost := I.Oe+16;
for number_of_SAls := 1 to 4 do
begin

SA.TypeOfSAI[l] := primary;
if number_oCSAls > 1 then
for i ;= 2 to number_oCSAls do SA.TypeOfSAI[i] ;= secondary;

if grid_distribution_cost < mincost then
begin

mincost := grid_distribution_cost;
SA.number of SAls := number_oCSAls~

SA.X ;= X;
SA.Y := Y;
SA.grid_distribution_cost := grid_distribution_cost - tenn_cost;
SA.secondary_ttenn_cost := tenn_cost;
SA.snc96 ;= nc96;
SA.snc24 := nc24;
SA.gridJine_feet ;= grid_line_feet;
SA.grid_drop_feet := grid_drop_feet;
SA.density := density;
SA.drop_cost := drop_cost;
SA.drop_tenninal_cost := drop_tenninal_cost;
SA.nid_cost := nid_cost;
SA.MaxDistance := MaximumDistance;

end;
end; {for number_of_SAIs }

III. PRIM DISTRIBUTION MODULE (PRlMDIST.PAS)

This module sets up a matrix of costs of connection between each SAl (assuming T1
connection) and arranges the network so that each SAl (primary or secondary) is attached
to its nearest neighbor that is on the network. For details, consult the source code listing
or the article by Gower and Ross, "Minimum Spanning Trees and Single Linkage Cluster
Analysis," Applied Statistics, 18, 54-64, and the associated algorithms (copy attached).

IV. FEEDER MODULE (FEEDER.PAS)

This module optimizes the feeder-subfeeder arrangement in each quadrant. It will try all
combinations of subfeeder arrangements from one through the number of serving areas,
and choose the cost-minimizing configuration. As it calculates feeder cost, it will
optimize the "technology choice for serving each S.A. by determining the cost minimizer
subject to any engineering constraints. To accomplish this, we use the Technology and
Terminal modules, described below.

Optimize_feeder_arrangement

FOR QUADRANT := 1 to 4 DO
BEGIN

if num SAs > 1 then
sort2(num_SAs,dist,~SA_array);

{ q_SA_array is now sorted in ascending order according to X distance }
{ (quadrants 1 and 3) or Y distance (quadrants 2 and 4) from the switch. }

{Now create subfeeders along the midpoints ofthe 1/i quanti/es, with i}
(going from 1 to q1_SAs.)

if nwn SAs > 0 then
for i := 1 to num_SAs do { i will index arrangements of subfeeders }
begin

for j := 1 to i do
begin

Get quantile breaks
Set subfeeder locations equal to midpoints of each quantile

end; (for j)

{ Now, in quadrants 1 and 3, walk down subfeeders from North to South first, and then}
{from South to North, both ending at the main feeder. In the other quadrants, do the}

{ same thing but from East to West.

for n := 1 to num._SAs do find nearest subfeeder to each SAl;
adjust subfeeder location S.t. structure cost of connecting to it is minimized;

calculate_quadrant_density;
optimize feeder technology;
calculate_quadrant_structure_costs;

for j := i downto 1 do {j indexes subfeeders for arrangement i}
begin

sort SAls north of main feeder;
{ Do subfeeder north ofmain feeder }

for k:= cl downto 1 do
{ k indexes SAs on this subfeeder, north ofmain feeder}
begin

bring SA lines to subfeeder;
bring subfeeder to either next point of contact with SA or main

feeder;
end; {for k}

{ Do subfeeder south ofmain feeder}

}

for k := 1 to c2 do { k indexes SAs on this subfeeder, south ofmain feeder}
begin

bring SA lines to subfeeder;
bring subfeeder to either next point of contact with SA or main

feeder;
end; {for k}

Now bring main feeder either to next subfeeder point of contact or to
central office;

End; {for j -- go to next subfeeder }
If configuration I is cost minimizing, then save it;

End; {for I - try another subfeeder configuration}
END; {for quadrant - go to next quadrant}

V. TERMINAL MODULE (TERMINAL.PAS)

This function solves the problem

Minimize FTC = a2016 + b2016*L2016 + a672 + b672*L672 + a96 + b96*L96+ a24 +
b24*L24 + cable cost

N2016
N672
N96
N24

Subject to:
L2016 = min(2016*N2016, lines)
L672 = min(672*N672, lines - L2016)
L96 = min(96*N96, lines - L2016 - L672)
L24 = min(24*N24, lines - L2016 - L672 - L96)

Where

N2016 =
N672=
N96=
N24=.

L2016 =
L672 =
L96 =
L24=

a2016 =
a672 =
a96=
a24=

b2016 =
b672 =
b96=
b24=

number of2016-line terminals
number of 672-line terminals
number of 96-line tenninals
number of 24-line terminals

number of lines on 2016-line terminals
number of lines on 672-line terminals
number of lines on 96-line terminals
number of lines on 24-line terminals

fixed cost of 2016-line terminal
fixed cost of 672-line terminal
fixed cost of 96-line terminal
fixed cost of 24-1ine terminal

per line cost of 2016-line terminal
per line cost of 672-line terminal
per line cost of 96-line terminal
per line cost of 24-line terminal

cable cost = cost ofcable given terminal configuration (number of fibers = number of
terminals x 4)

lines = total DSO lines in distribution area

..

Tl terminal cost fn- --
This function solves the problem

Minimize TI TC =ac96 + bc96*LC96 + ac24 + bc24*LC24
NC96
NC24

Subject to: .
LC96 = min(96*NC96, lines)
LC24 = min(24*NC24, lines - LC96)

Where

NC96 =
NC24 =

LC96 =
LC24 =

ac96 =
ac24 =

bc96 =
bc24 =

lines =

number of 96-line terminals
number of 24-line terminals

number of lines on 96-line terminals
number of lines on 24-line terminals

fixed cost of 96-1ine terminal
fixed cost of 24-line terminal

per line cost of 96-line tenninal
per line cost of 24-line terminal

total DSO lines in distribution area

VI. TECHNOLOGY MODULE (TECH.PAS)

This module calculates a provisional feeder cost for each technology type for each
serving area grid, and chooses the cost minimizer, subject to the constraint that no
engineering crossover point is violated.

c26 := feed_cable_cost(copper26) + analog cross-connect cost;
c24 := feed_cable_cost(copper24) + analog cross-connect cost;
ctl := feed_cable_cost(t_I) + TI tenninal cost; {optimized}
cf := feed_cable_cost(fiber) + fiber terminal cost; {optimized}

technology := copper26;

if(c24 < c26)
or (feeder_distance + MaxDistance > copper_gauge_xover)
then technology := copper24;

if ((ctl < mine c24,c26)))
or (feeder_distance + MaxDistance > max_copper_distance)
or (feeder_distance> copper_tl_xover)
then technology:= t_l;

if (cf < mine minec24,c26), ct1))
or (feeder_distance> tl_fiber_xover)
then technology := fiber;

